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Abstract

Despite recent advances in vision transformers, their
computational demands limit deployment in real-time ac-
cessibility applications. We present a systematic study of
American Sign-Language (ASL) alphabet and digit recog-
nition using three modern vision backbones—CoAtNet,
vanilla Vision Transformer (ViT-Base), and the gesture-
tuned HGR-ViT—across two scales of data. After introduc-
ing the ASL recognition task and related work, we describe
our experimental setup: a 2,520-image pilot corpus and the
104k-image DeepASLR benchmark, uniform training proto-
cols, and metrics that couple accuracy with computational
cost. We then detail the architectures and their theoret-
ical FLOPs/parameter footprints before reporting results.
On the small ASL dataset, CoAtNet emerges as the clear
”accuracy-per-compute” winner, achieving 99.2% valida-
tion accuracy, on the small ASL dataset with only 8.95
GFLOPs / 26.7M parameters, and reaching perfect accu-
racy on DeepASLR in 3h 15m—representing a 3× speed-up
versus both Transformer baselines, which require approxi-
mately 9 hours and use 3.8× more FLOPs and 3.2× more
parameters. Error analysis pinpoints a handful of confus-
able letter pairs, motivating targeted augmentation and spe-
cialist heads. Finally, we outline future work that couples
efficiency-oriented compression with self-supervised pre-
training on unlabeled ASL video, aiming to retain near-
ceiling accuracy while driving latency and energy con-
sumption toward real-time edge deployment, potentially im-
proving accessibility for deaf and hard-of-hearing commu-
nities.

1. Introduction
With over 70 million deaf individuals worldwide facing

persistent communication barriers, automatic sign-language
recognition (SLR) offers a practical route to narrowing that
gap. Early deep-learning efforts relied on recurrent neural
networks (RNNs) for temporal dynamics [11, 12, 14], while
convolutional neural networks (CNNs) provided strong spa-
tial encoders [17, 10, 20, 21]. More recent work introduced

spatial-temporal models such as TSTM and Graph Con-
volutional Networks (GCNs) that explicitly couple motion
and appearance [8, 13]; comprehensive surveys chart these
trends in depth [2].

The breakthrough Transformer architecture [22] has
since proved effective in vision tasks [7] and, specifically,
American Sign-Language (ASL) recognition [19]. Yet pure
Transformers can struggle with data efficiency and fine-
grained local detail, prompting hybrid designs that fuse
CNN backbones with attention layers [4]. Parallel to these
advances, graph-based methods model the signer’s skeleton
as a temporal-spatial graph, allowing the network to learn
joint relationships more naturally [15].

Building on these ideas, our project integrates CNN
features and Transformer attention within a single frame-
work (CoAtNet)—the first systematic evaluation of CNN-
attention hybrid models for static ASL recognition. The
goal is to retain the inductive biases and computational ef-
ficiency of convolutions while benefiting from the global
receptive field of self-attention.

On the 2,520-image low-resource corpus, our fine-tuned
CoAtNet reached 99.3% test accuracy while consuming
only 8.95 GFLOPs and 26.7 million parameters. Both the
vanilla Vision Transformer and the gesture-tuned HGR-ViT
lagged behind at 98.3% and 98.7% respectively, despite re-
quiring roughly 2.1× the computational budget (33.74 vs
8.95 GFLOPs).

Scaling up to the 104k-image DeepASLR benchmark, all
three architectures eventually attained perfect training and
validation accuracy. Even so, CoAtNet converged in just 3
hours 15 minutes, whereas the two Transformer baselines
needed close to 9 hours. The hybrid model also reduced the
cumulative floating-point workload to about 4.5 billion op-
erations, compared with 12− 17 billion for its competitors.

Taken together, the results point to a consistent three-fold
advantage for CoAtNet in both wall-clock training time and
compute-to-accuracy efficiency, making it the most practi-
cal choice across datasets and scales. These efficiency gains
are particularly crucial as ASL recognition systems transi-
tion from laboratory settings to real-world assistive tech-
nologies.
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In the remainder of this report, we detail the related lit-
erature (Section 2), the experimental methodology (Section
3), datasets (Section 4), an extended analysis of errors and
runtime characteristics (Section 5), and directions for future
work (Section 6).

2. Related Work

Before presenting our integrated approach in detail, we
review the key developments in deep learning for sign-
language recognition that inform our work, highlighting the
strengths and limitations of each architectural family.

2.1. CNN, RNN, LSTM

Convolutional neural networks (CNNs) have become the
workhorse architecture for sign-language recognition, con-
sistently delivering high accuracy on static and isolated ges-
tures yet still facing robustness gaps in continuous, real-
world settings.

Early research by [17] proposed a Kinect-based system
that ran two parallel CNNs—one targeting hand regions and
the other upper-body silhouettes—to recognize 20 Italian
Sign-Language gestures. The model achieved 91.7% cross-
validation accuracy and generalized well to unseen signers
and environments. Subsequent work focused on static or
isolated gestures.

[21] showed that a deep CNN could dispense with ex-
plicit hand segmentation and handcrafted features, reach-
ing 94.7% accuracy on the NUS Hand Posture dataset and
99.96% on the American Fingerspelling A dataset, despite
minimal inter-class variation. In [10], the authors created
a 104K image ASL alphabet dataset captured at multiple
distances and lighting conditions, then trained a three-layer
CNN that attains ∼99.4% accuracy on two public bench-
marks and 99.38% on their own, more challenging set, and
developed a real-time OpenCV interface for robust letter-
level ASL recognition.

A survey by [20] synthesized these CNN-based ad-
vances, outlining the common pipeline—data capture,
hand-region preprocessing, CNN-driven feature learning,
and classification. Reported signer-dependent accuracies
ranged from 69.0% to 98.0% (mean ∼88.8%), with the
best static-sign systems exceeding 99%. The authors argued
that further progress would require larger, less-constrained
datasets to improve robustness in real-world settings.

While CNNs excel at spatial feature extraction and
achieve high accuracy on static gestures, they struggle
with temporal dependencies and global context model-
ing—limitations that motivate the exploration of sequential
and attention-based approaches.

While CNNs established strong baselines for spatial fea-
ture learning, the sequential nature of sign-language moti-
vated researchers to explore temporal modeling approaches,

leading to the adoption of recurrent architectures. Recur-
rent neural networks—especially long short-term memory
(LSTM) variants—have become an important mechanism
for modeling the temporal evolution of gestures once spatial
features (e.g., hand shapes) have been extracted by CNNs or
other encoders. Across a growing body of work, they con-
sistently boost recognition accuracy on isolated words and
make sentence-level sign-language translation feasible.

The study [11] built a Leap-Motion-based pipeline in
which 30 hand-motion features were passed to an LSTM-
RNN whose hidden states were finally classified with a k-
NN layer; the system correctly identified all 26 ASL letters
with 99.4% accuracy (91.8% under 5-fold cross-validation),
underlining how even low-cost depth sensors paired with
LSTMs can achieve near-perfect alphabet recognition.

[14], the authors combined an Inception CNN with a
one-layer RNN to recognize 46 Argentine Sign-Language
(LSA) words in real-time; spatial features from successive
video frames feed the RNN, yielding 95.2% top-1 accuracy
and demonstrating that a shallow recurrent head is enough
when visual embeddings are strong.

In [12], the authors took a different route, replacing CNN
features with handcrafted motion descriptors but using a
deeper LSTM stack to capture long-range dependencies;
their model surpassed traditional HMM and SVM pipelines
on a 200-word Chinese-SL dataset, signaling the LSTM’s
advantage for sequential modeling even without deep spa-
tial encoders. Pushing beyond isolated gestures,

In [9], the authors proposed a hierarchical en-
coder–decoder in which a 3D-CNN mines variable-length
“viseme” clips, and three stacked LSTM layers first sum-
marize those clips and then decode them into full sentences.
The framework outperformed CTC and HMM hybrids on
signer-independent tests with unseen sentences, showing
that multi-level LSTMs with attention can handle the re-
ordering and co-articulation inherent in continuous sign-
language translation.

In summary, RNN/LSTM modules have matured into a
“classical baseline” for temporal modeling in sign-language
recognition: they lift isolated-word accuracies into the mid-
90s or higher, and—when organized hierarchically—enable
direct video-to-sentence translation. Remaining challenges
include scaling to large, signer-independent vocabularies,
integrating non-manual cues, and maintaining low latency;
these issues motivate emerging hybrids that pair LSTMs
with 3D-CNNs, graph networks, or Transformers as the
next research frontier.

2.2. Transformers

Transformers have only recently migrated from language
to vision, but the seminal Vision Transformer (ViT) paper
[7] showed that simply treating an image as a sequence of
fixed-size patches and feeding them to a vanilla encoder
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can rival—or surpass—deep CNNs once large-scale pre-
training is available. This “patch-token” view removes the
locality bias of convolutions and gives the model global
context from the first layer, inspiring a wave of work that re-
thinks sign-language pipelines around attention rather than
kernels.

The first end-to-end application to continuous signing
came with Sign-Language Transformers by [3]. A CNN
front-end extracted video features, but all sequence mod-
eling was handled by a Transformer encoder–decoder that
was trained jointly for two objectives: (i) gloss-level recog-
nition via a CTC loss and (ii) spoken-language translation
via cross-entropy. On the RWTH-PHOENIX-14T bench-
mark, the model doubled the previous BLEU score for
translation quality and set new state-of-the-art word-error
rates.

Attention models have also pushed static hand-gesture
tasks to ceiling performance. In [19], the HGR-ViT slices
each hand image into 16×16 patches, adds learnable po-
sitional embeddings that explicitly encode orientation and
location, and feeds the sequence through a pure ViT en-
coder followed by an MLP head. Despite its simplic-
ity, the network reaches 99.98% on the ASL alphabet,
99.36% on ASL-Digits, and 99.85% on the NUS posture
set—essentially saturating these benchmarks and confirm-
ing that Transformers can discover subtle inter-finger cues
without handcrafted pre-processing.

One open question is how to retain the data-efficiency
inductive biases of convolutions while benefiting from
the global receptive field of attention—crucial for sign-
language corpora that are still orders of magnitude smaller
than ImageNet. CoAtNet [5] tackled exactly that by inter-
leaving MBConv blocks with relative-attention Transformer
layers; in image classification it matches or beats ViT while
using dramatically less data and compute. Although not yet
evaluated on SLR, its hybrid philosophy offers a promising
blueprint for future signer-independent models that must
generalize from limited footage.

As transformer architectures continue to evolve rapidly,
recent developments have focused on making attention
mechanisms more efficient for specialized applications like
gesture recognition, reinforcing the importance of the hy-
brid approaches we investigate in this work.

In summary, the transformer era of SLR is unfolding
along two tracks: (1) sequence-to-sequence models that
drop recurrent stacks in favor of multi-head attention and
jointly learn recognition plus translation, and (2) vision-
transformer front-ends that treat each video frame—or even
each tracked hand—as a bag of patches to be globally rea-
soned over. Early results already outperform long-standing
CNN/RNN baselines, but challenges such as small ASL
datasets, fine-grained non-manual cues, and real-time la-
tency remain—motivating continued exploration of hybrid

designs and spatial-temporal transformer variants.
Despite these promising results, Transformers face sev-

eral challenges in SLR: (1) high computational cost limit-
ing real-time deployment, (2) data hunger requiring large
training corpora, and (3) lack of inductive biases for spatial
locality that CNNs naturally provide.

While Transformers excel at global reasoning, graph-
based approaches offer complementary benefits through
their explicit modeling of anatomical structure, as the next
section describes.

2.3. Graph-based Representation

Graph-based SLR treats the signer’s body as a skele-
ton graph whose joints are nodes and bone connections are
edges, letting neural networks reason directly over the spa-
tial–temporal structure of a sign.

Adapted from action-recognition, the Spatial-Temporal
Graph Convolutional Network (ST-GCN) in [6] encoded ev-
ery video as a stack of skeleton graphs and applied shared
graph kernels across both space and time. Without any
RGB appearance cues, the model already exceeded earlier
CNN/RNN baselines and came with an ASLLVD-Skeleton
dataset (2,745 signs, ∼10k clips), demonstrating that joint-
level dynamics alone are highly discriminative for isolated
signs.

Later work in [16] focused on efficiency and scale. It in-
troduced bottlenecked residual GCN blocks that reduce pa-
rameters (0.6 M vs 12 M in I3D) yet push pose-only Top-1
accuracy to 74% to 83% (+8.9 pp) on WLASL-100, 49% to
76% (+27.6 pp) on WLASL-300, and 29% to 56% (+27 pp)
on WLASL-1000—while hitting 100% on the small LSA64
set. It also ran an order of magnitude faster (0.04 s vs 0.50
s per clip) thanks to lightweight graph convolutions.

Recognizing that most linguistic content sits in the
fingers, [18] Hand-Aware GCN HA-GCN re-weights the
skeleton to give hands higher resolution and adds a dedi-
cated hand-topology attention branch before merging with
the global body graph. The model reports state-of-the-art
accuracies (e.g., 96 – 98% on AUTSL-226 and CSL-500)
while using fewer parameters than multi-scale CNN–GCN
hybrids, highlighting the value of fine-grained, anatomy-
aware graph design.

Graph representations have evolved from vanilla ST-
GCNs that simply mirror the kinematic tree to specialized,
hand-centric or residual architectures that boost both robust-
ness and speed. They excel on large-vocabulary, signer-
independent benchmarks without the heavy compute of
appearance-based 3D CNNs, but still rely on reliable pose
extraction and struggle with subtle non-manual cues (fa-
cial expressions, mouthing). Current trends mix graph cues
with transformers or multi-modal features, aiming to close
that remaining gap while keeping the structural advantages
of graph learning intact. These emerging hybrid directions
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highlight the potential of combining complementary archi-
tectural strengths.

Our review of the literature reveals several key research
gaps. First, while CNNs excel at spatial feature extrac-
tion, RNNs at temporal modeling, and Transformers at
global attention, few approaches have successfully inte-
grated all three architectural paradigms. Second, graph-
based methods demonstrate the power of structural priors
but have rarely been combined with the representational ca-
pacity of Transformers. Third, the fragmentation of ASL
datasets has limited cross-corpus evaluation, making it dif-
ficult to assess generalization across different signing condi-
tions. Our work specifically addresses these gaps through a
unified multi-architecture approach and harmonized bench-
mark creation, seeking to combine the strengths of each
method while mitigating their individual weaknesses.

3. Methods
3.1. Fine-tuned CoAtNet for ASL data

While Transformers offer high model capacity, they of-
ten generalize less well than convolutional networks be-
cause they lack the inductive biases that favor vision
tasks—an issue that is amplified on modest-sized datasets
such as ours for ASL. To mitigate this, we fine-tune the
CoAtNet architecture [5], which explicitly fuses convolu-
tion and self-attention, thereby combining the strengths of
both families.

During block-level fusion, the depth-wise convolution
and self-attention share an identical “weighted-sum” form.
For a location i,

yi =
∑

j∈L(i)

wi−jxj (depth-wise conv), (1)

yi =
∑
j∈G

exp(xT
i xj)∑

k∈G exp(xT
i xk)

xj (self-attention). (2)

Convolution provides translation equivariance because
its weights depend only on the offset i − j. Self-attention,
in turn, provides input-adaptive weights and a global recep-
tive field. CoAtNet unifies all three properties by adding a
scalar convolution kernel wi−j to the attention logits:

yi =
∑
j∈G

exp(xT
i xj + wi−j)∑

k∈G exp(xT
i xk + wi−k)

xj . (3)

This equation is a standard soft-max attention, so computa-
tional cost is unchanged, yet the wi=j term restores transla-
tion equivariance.

In the network-level stacking, CoAtNet downsamples
aggressively and has the following layers.

• S0: two-layer convolutional stem

• S1: MBConv + SE

• S2-S4: either MBConv (C) or the hybrid Transformer
block (T), with all C stages preceding any T stages.

The paper tests and compares five layouts:

C-C-C-C,C-C-C-T,C-C-T-T,C-T-T-T,VIT-REL

Balancing generalization, capacity, and efficiency, we
adopt C-C-T-T as our backbone. All pre-trained weights
up to the penultimate layer are retained, and the classifier is
replaced by a fully-connected head with

output dim =

{
26 ASL letters only,
36 letters + digits.

(4)

Algorithm 1 is described below. We also show the ASL-
adapted CoAtNet architecture in Figure 1.

Algorithm 1 Construction of the CoAtNet Fine-tuned
Model
Require: num classes, device

Instantiate CoAtNet-BN0 backbone pre-trained on
ImageNet-1k

1: model←
2: CREATE MODEL("CoAtNet bn 0 rw 224.sw in1k")

Replace the default head by an average-pooled lin-
ear classifier

3: model.head←
4: CLASSIFIERHEAD(in features, num classes, pool type

= “avg”, drop rate = 0.0)
Move model to the specified device

5: return model.TO(device)

Figure 1: ASL Adapted CoAtNet Architecture

3.2. Baseline Models

We compare the above fine-tuned model on two baseline
models.

The first one is the ViT model built in [7]. The ViT treats
an image x ∈ RH×W×C as a 1 − D token sequence by
cutting it into N = H×W

P 2 non-overlapping P × P patches,
flattening each to a vector of length P 2C and mapping these
vectors to a common latent size D via a learned linear pro-
jection E. The resulting patch embeddings are prepended
with a learnable [CLS] token and augmented by learned
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1 − D positional embeddings before being fed to the en-
coder. The encoder is a stack of L identical Transformer
blocks, each comprising pre-norm LayerNorm, multi-head
self-attention, and a two-layer GELU-MLP, with residual
connections after every sub-block; its output at the [CLS]
position is layer-normed and passed to a classification head
(a two-layer MLP during large-scale pre-training, a single
linear layer for downstream fine-tuning). We display the
architecture in Figure 2.

The second baseline model is the HGR-ViT model,
which adapts the ViT transformer for hand-gesture recog-
nition by retaining ViT-Base/32’s backbone while tailoring
the data pipeline and training schedule to small, gesture-
centric datasets. Each RGB frame is first resized to 256 ×
256 so it can be split into (32 × 32) patches—yielding
N = 64 tokens—that are flattened and passed through a
learned linear projection to a D-dimensional embedding
(the authors keep ViT-Base’s D = 768). A learnable [CLS]
token is prepended and standard 1-D learned positional em-
beddings are added, after which the sequence traverses the
12-layer Transformer encoder (pre-norm LN → Multi-Head
Self-Attention → LN → two-layer GELU-MLP, with resid-
ual connections). The normalized [CLS] vector emerging
from the final layer feeds a single fully-connected head fol-
lowed by soft-max, producing class probabilities for the
gesture set.

As no model or code is available for the HGR-ViT
model, we implement the model to replicate the logic men-
tioned in the paper.

Algorithm 2 Construction of the HGR-VIT Fine-Tuning
Model
Require: num classes, mlp ratio (α), dropout (p), device,

pretrained backbone
Create ViT-Base/16 backbone without classification
head

1: model← TIMM.CREATE MODEL("vit base patch16 224",
pretrained backbone, num classes, global pool)
Derive dimensions for the two-layer MLP head

2: din ← model.num features ▷ din = 768
3: dhid ← ⌊α× din⌋

Attach custom classification head
4: model.head← SEQUENTIAL(
5: LAYERNORM(din),
6: LINEAR(din, dhid),
7: GELU(),
8: DROPOUT(p),
9: LINEAR(dhid, num classes) )

Move to target device (mps, cuda, etc.)
10: return model.TO(device)

Figure 2: ASL Adapted ViT Architecture

3.3. Fine-tuning

For CoAtNet fine-tuning we start from the public
ImageNet-21k checkpoint (C-C-T-T layout), replace the fi-
nal classifier with a fresh linear head of 26 (letters-only) or
36 (letters + digits) outputs, and optimize the entire network
end-to-end on our ASL corpus. The training set is split into
train/validation/test folds; images are resized to 224× 224,
randomly augmented (crop + horizontal flip), and channel-
wise normalized. An Optuna Bayesian search explores four
hyper-parameters—learning-rate 10−5− 5× 10−3, weight-
decay 10−6 − 10−2, batch-size {16, 32, 48, 64}, and early-
stopping patience (3–8 epochs). Each trial trains for at
most 20 epochs with AdamW on a cross-entropy loss, a
ReduceLROnPlateau scheduler (factor 0.2, patience 2), and
class-balanced sampling; validation accuracy is the opti-
mization target while early-stopping and Optuna’s pruning
API terminate unpromising runs early. Once the study con-
verges, the best hyper-parameter set is fixed and the model
is re-trained from scratch for the full epoch budget, after
which the weights achieving the highest validation accuracy
are saved and finally evaluated on the held-out test fold, pro-
viding the checkpoint used in all downstream ASL experi-
ments.

Beyond early stopping, we implement multiple regular-
ization strategies to prevent overfitting on our modest-sized
dataset. These include L2 weight decay (optimized via Op-
tuna) and dropout regularization in the classification heads,
horizontal flipping, and color jittering to increase training
diversity. The ReduceLROnPlateau scheduler with factor
0.2 and patience 2 provides adaptive learning rate reduc-
tion when validation performance plateaus. Additionally,
we employ class-balanced sampling to ensure equal repre-
sentation of all ASL letters during training, preventing the
model from developing biases toward more frequent classes
in any given batch.

To enable a fair comparison, we perform the same fine-
tuning processes for the pre-trained ViT model and our built
HGR-ViT algorithms.

All experiments were conducted on a MacBook Pro M3
with 8-core CPU, 10-core GPU, and 16GB unified mem-
ory, utilizing Metal Performance Shaders (MPS) for GPU
acceleration through PyTorch 2.7.0. To ensure reproducibil-
ity, we fixed all random seeds, enabled deterministic oper-
ations, and version-pinned all dependencies in our require-
ments file. Training times averaged 3h 15m for CoAtNet
and approximately 9 hours for ViT variants on this hard-
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ware configuration. Hyper-parameter configurations, and
training scripts are made available with detailed documen-
tation to facilitate reproduction of our results.

All experimental code, trained model checkpoints, and
preprocessing pipelines are publicly available at CS231N-
ASL-Deep-Learning.

4. Dataset

In this paper, we explore three complementary ASL
datasets, illustrated in Figure 3, which together form the
foundation of our unified benchmark.

4.1. Data Description

ASL Alphabet: The ASL Alphabet corpus comprises
1,820 color images (RGB, 200 × 200 px) depicting 26 static
gestures: the 26 letters A–Z. Each class contains exactly 70
samples captured with consumer cameras under varied illu-
mination and background conditions. The hands belong to
multiple volunteers and vary in skin tone, scale, and orien-
tation. As shown in Figure 3, these images provide excel-
lent diversity in hand positioning. The dataset is organized
into 26 folder-based labels for training, with a separate val-
idation set (training ratio: 0.64, validation ratio: 0.16 and
test ratio: 0.2) for hold-out testing. Released on Kaggle [1]
under a permissive license, this dataset is particularly well-
suited for benchmarking static gesture classifiers.

ASL Digits: The ASL Digits Dataset contains 700 raw
RGB images representing signs for digits 0-9 (70 files per
digit) and their corresponding MediaPipe-processed ver-
sions. This dataset is already formatted with extracted hand
keypoints, making it particularly valuable for our skeleton-
based approach. An example is shown in Figure 3.

DeepASLR: The DeepASLR dataset [10] contains
104,000 RGB images of ASL letters (4,000 per letter) cap-
tured under systematically varied conditions. Unlike other
datasets with fixed camera distances (typically 0.5m, 0.75m,
or 1m), DeepASLR includes images at all three distances.
Additionally, it was collected at different times of day to in-
corporate diverse lighting conditions. A notable feature of
this dataset is its handling of dynamic letters like Z and J,
which typically require movement; DeepASLR represents
these with static gestures at the movement’s start or end
position, allowing for a complete alphabet within a static-
gesture recognition framework. An example is shown in
Figure 4.

4.2. Data Preprocessing

Our preprocessing pipeline consists of two main stages.
Data Aggregation and Corpus Harmonization: We

combined the the first two ASL datasets described above
into a unified corpus of 2,520 images across 36 semantic
classes. This process involved mapping folder names to a

Figure 3: Sample ASL alphabet signs showing static hand
gestures for letters A-Z and digits 0-9.

Figure 4: Sample ASL alphabet signs from the DeepASLR
dataset.

canonical label set (A–Z, 0–9) and generating a master man-
ifest with absolute path, class label, and dataset origin for
each image. This gives us a collection of small data, which
we call the ”small ASL dataset”. We also train models
on the DeepASLR dataset, which we call the ”large Deep-
ASLR dataset”. Using stratified sampling, we created dis-
joint train/validation/test partitions (64/16/20 ratio) while
preserving per-class frequencies within each source corpus.
This approach yields a balanced, signer-agnostic bench-
mark that better represents real-world deployment scenar-
ios.

To ensure our combined training set represents realistic
deployment conditions, we validated that our image resolu-
tion and quality ranges match typical mobile camera capa-
bilities (the primary deployment target). We also confirmed
background diversity spans common indoor environments
where assistive technologies would be deployed.

Data Normalization: All PNG input frames are passed
through a three-step preprocessing pipeline before entering
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the network: (i) spatial resizing reshapes every image to a
fixed 224 × 224 resolution, ensuring a uniform patch grid
for ViT-style backbones and a consistent receptive field for
CoAtNet. (ii) tensor conversion casts the uint8 pixel ar-
ray to [0,1], reorganizing the layout to channels-first (C =
3, H,W ); and (iii) channel-wise normalization subtracts the
ImageNet means (0.485, 0.456, 0.406) and divides by the
corresponding standard deviations (0.229, 0.224, 0.225),
aligning the dynamic range and color statistics of our ASL
data with those of the models’ pre-training corpus.

While we acknowledge that combining ASL Alphabet
and ASL Digits datasets without formal statistical compat-
ibility analysis represents a methodological limitation, our
approach is justified by several factors: (1) both datasets
target identical tasks with similar visual characteristics,
(2) stratified sampling preserves individual dataset proper-
ties, (3) consistent cross-validation performance suggests
minimal domain shift effects, and (4) the small corpus
size (2,520 images) enables quality control. Future work
should implement formal compatibility validation protocols
to strengthen multi-source dataset combination methodolo-
gies.

All preprocessing artifacts—including raw archives, di-
rectory structures, manifests, and landmark tables—are
version-controlled and released alongside our code, ensur-
ing full reproducibility.

5. Results
For all models—CoAtNet, ViT, and HGR-ViT—we used

cross-entropy loss as our objective function and adopted the
Adam optimizer due to its empirical stability and fast con-
vergence in transformer-based architectures. Learning rates
were selected via Optuna-based hyper-parameter search,
exploring a log-uniform range between 1e-5 and 5e-4. For
mini-batch size, we used 32, which balances convergence
stability and memory efficiency on a single-GPU setup. We
performed 3-fold cross-validation to estimate out-of-sample
performance, averaging metrics across folds to ensure ro-
bustness in evaluation and to mitigate overfitting risks.

Our primary evaluation metric is classification accuracy,
defined as:

Accuracy =
Number of correct predictions
Total number of predictions

(5)

5.1. On the small ASL dataset

We also report the categorical cross-entropy loss for each
phase (train, validation, test), as shown in parentheses in the
results table. Accuracy is a natural choice for this multi-
class classification task, and cross-entropy offers insight
into the model’s confidence calibration.

As shown in Table 1, Table 2 and Figure 5, for our
small ASL dataset, CoAtNet achieves the best gener-
alization across validation and test sets, outperforming

ViT and HGR-ViT in both accuracy and loss. Notably,
CoAtNet maintains the lowest test loss (0.0238), suggest-
ing better confidence calibration in its predictions. De-
spite having fewer parameters and GFLOPs, CoAtNet
demonstrates superior efficiency, achieving faster inference
time and smaller memory footprint—indicating a favorable
accuracy-complexity tradeoff.

Although all models achieved perfect training accuracy,
the ViT variant slightly overfits, as seen in its higher vali-
dation/test loss. We mitigated overfitting using dropout and
early stopping; future improvements could include stronger
data augmentation or regularization. Detailed failure cases,
saliency maps, and confusion matrices are included in the
supplemental material.

Model Train Val Test
CoAtNet 100.0% (0.0014) 99.2% (0.0307) 99.3% (0.0238)
ViT 100.0% (0.0187) 97.7% (0.0969) 98.3% (0.0925)
HGR-ViT 100.0% (0.0414) 98.2% (0.0985) 98.7% (0.0861)

Table 1: Model Performance Comparison for the small ASL
Dataset

Model Time (s) GFLOPs Params
CoAtNet 11.4 8.95 26.7M
ViT 16.2 33.74 85.8M
HGR-ViT 17.6 24.04 87.7M

Table 2: Model Computational Cost Comparison for the
small ASL Dataset

Figure 5: Accuracy vs. Model Efficiency. (Left): Test
accuracy plotted against computational cost (GFLOPs).
CoAtNet achieves the highest accuracy with the lowest
compute cost, demonstrating superior efficiency. (Right):
Test accuracy plotted against model size (number of param-
eters in millions). Again, CoAtNet outperforms larger mod-
els like ViT and HGR-ViT, indicating a better accuracy–
complexity tradeoff.

CoAtNet’s hybrid design yields the steepest learning
curve and the best ultimate generalization on this hand-
gesture classification task. Its early volatility (the epoch-2
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loss spike and accuracy dip) suggests sensitivity to learning-
rate warm-up or batch-norm statistics when the network
first encounters higher-resolution features; once stabilized,
however, it outperforms both Transformer baselines. HGR-
ViT, which is tailored to hand-pose inputs, trains smoothly
and exhibits almost no generalization gap, hinting at strong
inductive bias for this domain. The plain ViT lags mod-
estly behind in validation accuracy, implying that domain-
specific augmentations or architectural tweaks (as in HGR-
ViT) are beneficial when data are limited. Overall, all three
models achieve near-perfect training accuracy, but CoAtNet
secures the best trade-off between speed of convergence and
final validation performance.

Figure 6: Training and validation loss for three models on
the small ASL dataset

Figure 7: Training and validation accuracy for three models
on the small ASL dataset

5.2. On the large DeepASLR dataset

On the large-scale DeepASLR benchmark, all three
backbones—CoAtNet, vanilla ViT-Base, and the gesture-
specialized HGR-ViT—reach perfect training and valida-
tion accuracy, yet CoAtNet does so with a dramatically
lighter computational footprint: it requires ∼ 4.5B FLOPs
and 26.7M parameters, versus 16.9 B / 85.8 M for ViT and
12.0 B / 87.0 M for HGR-ViT. This translates into real-
world savings: on the same Mac M3 workstation a single

CoAtNet run finished in 3 hours 15 minutes, while both
Transformer variants needed roughly 9 h. The results there-
fore show that CoAtNet not only matches the strong accu-
racy of purpose-built Vision Transformers on a very large
dataset, but also delivers more than a 3× speed-up and 3–4×
lower compute/memory load, underscoring its suitability
when both performance and efficiency matter.

Metric CoAtNet ViT HGR-ViT
FLOPs 4.48B 16.87B 12.02B
Parameters 26.69M 85.82M 87.02M
Validation accuracy 100% 100% 100%
Training accuracy 100% 100% 100%
Training time ∼3 h 15 m ∼9 h ∼9 h

Table 3: Performance and Computational Metrics Compar-
ison for the large DeepASLR dataset

Figure 8: Training and validation loss for three models on
the large DeepASLR dataset

Figure 9: Training and validation accuracy for three models
on the large DeepASLR dataset

5.3. Discussions: Confusion Matrix

In the comparison of CoAtNet, HGR-ViT, and ViT using
confusion matrices and classification reports, we observe
key differences in performance across the models. While
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all three models excel at certain classes, their ability to gen-
eralize across all categories varies. CoAtNet shows strong
precision in detecting certain classes but struggles with oth-
ers, leading to a higher number of false positives in spe-
cific categories. For example “W”and “V”are confusing to
CoAtNet. Also, there is quite big a population of misclas-
sified “T” from a wide range of other classes. HGR-ViT,
on the other hand, tends to have a more balanced recall,
capturing a broader range of classes, but still confuses with
“T”and “W. ViT overall achieved the best performance and
in general does not get confused. The confusion matrix heat
maps shown in Figure 11 further highlight these discrepan-
cies, revealing patterns of misclassification that are shared
across all models, which can be crucial for future model
refinement and opportunities for feature engineering.

5.4. Discussion: MediaPipe Hand Landmarker

We initially explored processing every image in the
DeepASLR dataset using the MediaPipe Hand Landmarker
(BlazePalm detector + 21-keypoint regressor) to extract ex-
plicit skeletal cues as inputs for our model pipeline. How-
ever, the stacked-bar analysis in Figure 10 revealed that
fewer than 50% of images in every alphanumeric class
yielded valid pose detections, a sharp contrast to the∼ 96%
detection precision reported by MediaPipe under ideal con-
ditions. Given this low recall—and the risk of introducing
substantial noise into our training set—we opted to discard
the Landmarker-generated keypoints.

Instead, we fine-tuned state-of-the-art vision backbones
directly on the raw DeepASLR images. This approach de-
livered exceptional performance without requiring skeletal
annotations. Notably, CoAtNet achieved 99.3% test accu-
racy with just 8.95 GFLOPs and 26.7M parameters, outper-
forming both ViT (98.3%) and HGR-ViT (98.7%), which
were significantly more computationally intensive (33.74
and 24.04 GFLOPs, respectively). These results indi-
cate that lightweight yet powerful hybrid CNN-transformer
models like CoAtNet can achieve top-tier performance on
ASL recognition tasks without relying on additional pose
estimation. As a result, we concluded that investing further
effort to improve the Landmarker’s success rate would of-
fer minimal benefit, and we chose to allocate our resources
toward optimizing downstream classification instead.

6. Conclusion and Future Work
CoAtNet’s hybrid convolution-plus-attention design

translated into the best “accuracy-per-compute” across our
experiments. On the small 2,520-image corpus it not only
posted the top validation score ( 99.2%) but also did so with
8.95 GFLOPs and 26.7M parameters, roughly one-quarter
the compute budget of ViT-Base while matching or exceed-
ing its accuracy. The same story held on the 104k-image
DeepASLR benchmark: CoAtNet reached perfect accuracy

in 3 hours 15 minutes of training on a Mac M3, whereas
both Transformer variants required about nine hours. These
results confirm that CoAtNet is an attractive choice when
datasets are modest yet inference speed or energy is at a
premium.

Looking ahead, three research directions follow natu-
rally from the metric patterns we observed. First, leverage
mis-classification hotspots revealed by the confusion ma-
trices—letters such as W vs V or T vs others—to drive tar-
geted data augmentation (synthetic finger-pose jitter, shape-
aware mix-up) or lightweight specialist heads that focus on
visually similar pairs. Second, explore efficiency-oriented
hybrids: CoAtNet already trims FLOPs, but further gains
may come from (i) knowledge-distilling it into even smaller
student models, (ii) integrating inexpensive skeletal cues
whenever MediaPipe yields reliable landmarks, and (iii)
adopting token-pruning or adaptive-compute techniques so
the network expends attention only where high-resolution
detail is needed. Together, these avenues promise to keep
accuracy near ceiling while driving latency and power well
below today’s levels—critical for real-time sign-language
applications on edge devices.

At last, large-scale, unlabeled American Sign-Language
video corpora—e.g., ASLLVD raw footage, public
YouTube vlogs, or classroom lecture streams—can be ex-
ploited with self-supervised objectives tailored to sign-
ing. For instance, a CoAtNet backbone could first
learn visual primitives by predicting masked hand-patches
(MAE), aligning temporally adjacent clips (contrastive
or BYOL-like losses), or reconstructing signer-specific
hand-pose trajectories extracted with MediaPipe. Because
ASL is inherently bimodal, additional cross-modal objec-
tives—matching silent video to synthesized gloss embed-
dings or to auto-aligned motion-capture keypoints—can
deepen the representation without any manual annotation.
After such unsupervised pre-training, fine-tuning on the
comparatively modest labelled DeepASLR datasets should
(i) improve recognition of subtle, confusable letter pairs,
(ii) accelerate convergence, and (iii) enhance robustness to
signer variability, lighting, and camera angles. Ultimately,
this pathway promises high-accuracy ASL recognition that
continues to improve over time simply by absorbing new,
unlabeled signing videos encountered in the wild.

7. Appendix

8. Contributions and Acknowledgements
This is a collaborative project contributed by Hengjin

Tan, Kai Liu, and Jingshu Liu. Hengjin led the initial re-
search phase, including data collection and preparation of
model training code. Kai was responsible for executing
the experiments, developing models (unsupervised learn-
ing), and generating evaluation metrics such as recall and
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Figure 10: CoAtNet Model Training Results on MediaPipe
Landmarks

F1-score. Jingshu contributed to the research design, as-
sisted with code development, and took the lead in writing
the final report.

The code can be found in the repository: CS231N ASL
with Deep Learning.
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